Abstract

Transposon mutagenesis and plasmid complementation studies have identified two genes, fepD and fepG, which are essential for ferrienterobactin transport in Escherichia coli. These genes mapped in the enterobactin gene cluster and genetic evidence indicated that they are transcribed as part of an operon (fepD, fepG, fepC). The nucleotide sequence of fepD was determine; it could encode a hydrophobic 33.8 kDa protein with sequence homologies to other iron and vitamin B12 transport proteins. Also identified, between fepD and fepB, was an open reading frame (ORF43) with no detectable function; its 43 kDa protein product (P43) was seen on polyacrylamide gels. The fepD-C operon and ORF43 were divergently transcribed from a 110bp region containing a binding site for the repressor protein Fur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.