Abstract

Cellular iron homeostasis is maintained by iron and heme transport proteins that work in concert with ferrireductases, ferroxidases, and chaperones to direct the movement of iron into, within, and out of cells. Systemic iron homeostasis is regulated by the liver-derived peptide hormone, hepcidin. The interface between cellular and systemic iron homeostasis is readily observed in the highly dynamic iron handling of four main cell types: duodenal enterocytes, erythrocyte precursors, macrophages, and hepatocytes. This review provides an overview of how these cell types handle iron, highlighting how iron and heme transporters mediate the exchange and distribution of body iron in health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.