Abstract

Abstract Plasticity of inhibitory synapses keeps inhibition in balance and in register with excitation when changes occur in excitatory synapses. Inhibition has many functions to perform, and there are many kinds of inhibitory neurons to perform various computations and regulate network activity. Different forms of long-term changes in inhibitory synapses have been demonstrated that depend on neural activity. Inhibitory plasticity appears to be partly responsible for the specificity of the inhibitory connections needed to carry out some inhibitory functions. The evolving story of cortical inhibitory plasticity shows that different types of inhibitory interneurons play different roles in a variety of inhibitory functions, that several types of inhibitory plasticity have been attested, and that different forms of plasticity can be expected to have different effects on the organization and specificity of inhibitory connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call