Abstract

Organic-inorganic hybrids are next-generation materials for use in high-performance optoelectronic devices owing to their adaptabilities in terms of design and properties. This article reviews the application of hybrid materials and layers in several widely used optoelectronic devices, i.e., light amplification by stimulated emission of radiation (LASER), solar cells, and light-emitting diodes (LEDs). The effects of the incorporation of inorganic particles on photostability and optical gain are analyzed in the first section with reference to dye and perovskite lasers. Second, the strategies used in blending inorganic nanostructures into organic solar cells and bulk heterojunctions are analyzed. The use of various organic layers as electron- and hole-transport materials in Si heterojunction solar cells is reviewed in detail. Finally, the benefits of the presence of organic components in quantum-dot- and perovskite-based LEDs are derived from the analysis. The integration of organic and inorganic components with optimal interfaces and morphologies is a challenge in developing hybrid materials with improved efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.