Abstract

ABSTRACTGas sensors based on organically hybridized SnO2 films are demonstrated. Upon exposure to CO gas, the electrical resistance of the hybrid sensor with amino groups in the organic components increases (R-increasing response), whereas other reducing gases such as H2 and CH4 gases cause the decreasing in the sensor resistance. For the n-type semiconductors like SnO2, the R-increasing response cannot be explained by the ordinary combustion mechanism. The appearance of the anomalous R-increasing response to CO gas can be controlled by the functional groups of the organic component. The hybrid sensor with hydroxy groups also exhibits the R-increasing response to CO gas, whereas it is not observed for the sensor with alkyl groups. The hybridization can improve gas selectivity of the SnO2 semiconducting gas sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.