Abstract

An integrated optimization model for an organic-waste-derived butyric acid-to-butanol supply-chain network (BABSCN) is proposed to minimize the total network cost by simultaneously optimizing both strategic biodiesel production and waste management planning decisions. This model is useful for ensuring effective organic-waste provision for large-scale biodiesel production and waste management. The proposed mixed-integer linear-programming model optimizes the activities ranging from organic-waste preprocessing to butyric acid (BA), transportation of BA to biorefinery, butanol (BuOH) production and mixing with diesel to the distribution of biodiesel. This model is useful for forecasting organic-waste management biodiesel supply chains in South Korea in 2030. The case study results show that a total network cost of $US 3.16/gallon of B3 contains 3% BuOH from organic waste products combined with diesel. The biorefinery-related cost accounts for 98.3% of the total network cost, followed by the organic waste procurement cost (1.1%) and biodiesel distribution cost (0.6%). A scenario-based analysis shows that a 7%-BuOH increase in biodiesel increases the total network cost by 18.8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call