Abstract
We report the effect of magnetic impurities in the spacer layer of polymeric spin valves (PSV) with the sandwich configuration of La0.67Sr0.33MnO3(LSMO)/π-conjugated polymer regio-random poly(3-hexyl thiophene)/cobalt (Co), showing giant magnetoresistance (GMR) response. Different deposition rates of Co at the top electrode resulted in two types of devices: one with lower device resistance and linear current–voltage (I–V) characteristics and the other with very low inclusion of Co and exhibiting higher device resistance and nonlinear I–V characteristics. We observed an asymmetric dc bias dependence of magnetoresistance (MR) in devices with more Co inclusion, while for the other type of device, bias dependence was more symmetric. At higher bias, %MR of both types of device showed no significant difference (5–10%), but at low dc bias it ranged between 50 and 160% MR. This can be attributed to the higher tunneling probability of spin-polarized carriers from one ferromagnetic electrode to the other. Magnetic tunnel junction-like features are observed in the devices with greater Co inclusions. Anomalous MR peaks were also observed in these devices and their origin was explained in terms of presence of additional scattering centers around the included metal ions and increased spin relaxation due to high magnetic anisotropy in the system. Both types of PSVs showed a monotonic decrease in MR with temperature at high bias currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.