Abstract

Spintronics, also known as spin electronics, or magnetoelectronics, refers to the study of the role that electron and (less frequently) nuclear spins play in solid state physics, and a group of devices that specifically exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge. As a principal type of spintronic device, a spin-valve is a device that uses ferromagnetic electrodes to polarize and analyze the electronic spins. The electrical resistance of the device depends sensitively on the relative magnetization of its two ferromagnetic electrodes, a phenomenon referred to as Giant Magnetoresistance (GMR). Having been successfully applied in the field of data storage, GMR also shows potential for future logic devices. Organic semiconductors possess many advantages in electronic device applications. Therefore, using organic semiconductors in spintronics is very interesting and promising, in part, because of their exceptionally long spin-decoherence times. This thesis concerns itself with the scientific study of magnetic field and spin effects in organic spin valves (OSV) and organic light emitting diodes (OLED). Three projects were finished, achieving a better understanding of the transportation of charge and spin carriers inside organic films, and paving the way to enhancing the spin diffusion length and the organic magnetoresistance (OMAR) effect. Firstly, C60 films were used as the spin-transport layer of OSV devices, because of its low hyperfine coupling and high mobility, which prior work suggested to be beneficial. Subsequently we studied the spin injection and transport properties by measuring the devices’ magnetoresistance (MR) response at various biasing voltages, V, temperatures, T and different C60 film thickness. But we do not observe a significantly increased spindiffusion length compared to OSV devices based on other organic semiconductors. We propose conductivity mismatch as a likely cause of the loss of spin-valve signal with increasing C60 layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.