Abstract

Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.