Abstract

Theoretical studies of organic solar cells are mostly based on one dimensional models. Despite their accuracy to reproduce most of the experimental trends, they intrinsically cannot correctly integrate the effects of morphology in cells based on a bulk heterojunction structure. Therefore, accounting for these effects requires the development of two dimensional models, in which donor and acceptor domains are explicitly distinct. In this context, we propose an analytical approach, which focuses on the description of the interface between the two domains. Assuming pinned charge transfer states, we rigorously derive the corresponding boundary conditions and explore the differences between this model and other existing models in the literature for various morphologies of the active layer. On one hand, all tested models are equivalent for an ideal interdigitated bulk heterojunction solar cell with a planar donor-acceptor interface, but divergences between the models rise for small sizes of the donor domain. On the other hand, we carried out a comparison on a less ideal case of cell, with a rough interface between the two domains. Simulations with such cells exhibit distinct behaviors for each model. We conclude that the boundary condition for the interface between the materials is of great importance for the study of solar cells with a non-planar interface. The model must account initially for the roughness of the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call