Abstract
We introduce density gradient of p- and n-type compound semiconductor nanostructures in bulk-heterojunction (BHJ) solar cells. The graded BHJs (GBHJs) were formed with the p-type copper-zinc-tin-sulfide (Cu2ZnSnS4) nanoparticles and n-type Bi2S3 nanorods, both of which were based on nontoxic and earth-abundant elements and were grown at a moderate reaction temperature (180 °C). The concentration gradient of the nanostructures in the GBHJs provided a preferred directionality of nano-depletion regions for directed charge separation and also a controlled vertical segregation for ever-increasing carrier-transport pathways during the charge-extraction process. A comparison of solar cell characteristics having a bilayer, a BHJ, and a GBHJ structure is being presented. The performance of the thickness-optimized devices for highest efficiency shows that the GBHJ offered an improved short-circuit current as compared to the bilayer and the BHJ structures and a higher fill-factor as compared to the BHJ device. The overall energy conversion efficiency (η) of GBHJ exceeded that of the other two heterojunctions. The advantages of GBHJ structures in yielding an improved η have been explained through an increased exciton dissociation process along with a lower carrier recombination as compared to the bilayer and the BHJ structures, respectively. Series and shunt resistances, which were derived from current-voltage characteristics and impedance spectroscopy, supported such analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.