Abstract
ABSTRACTWe describe the synthesis and study of the first organic polymer semiconductor superlattices designed as periodic block conjugated copolymers, (−AxBy−)m. The observed variation of electronic spectra and wavelength of the lowest energy absorption maxima with block length y are interpreted in terms of quantum confinement size effects predicted for semiconductor superlattices. The periodic block conjugated copolymers were synthesized by a two-step strategy that ensure strict control of sequence, block length and periodicity. It is suggested that organic semiconductor superlattices provide a rational and systematic approach to the molecular engineering of electronic, optical, nonlinear optical, and electro–optical properties in polymeric materials and hold promise for molecular electronics and molecular photonics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have