Abstract

AbstractFor the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9′‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl‐group‐functionalized ethylene oxide (PS‐PEG‐COOH) are introduced as a photocatalyst towards visible‐light‐driven hydrogen generation in a completely organic solvent‐free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h−1 g−1 was obtained for visible‐light‐driven hydrogen production, which is 5‐orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40 %. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light‐driven water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.