Abstract

Given the photocatalytic properties of semiconducting polymers and carbon quantum dots (CQDs), we report a new structure for a metal-free photocatalytic system with a promising efficiency for hydrogen production through the combination of an organic semiconducting polymer (PFTBTA) and N-doped carbon quantum dots (NCQDs) covered by PS-PEGCOOH to produce heterostructured photocatalysts in the form of polymer dots (Pdots). This design could provide strong interactions between the two materials owing to the space confinement effect in nanometer-sized Pdots. Small particle size NCQDs are easy to insert inside the Pdot, which leads to an increase in the stability of the Pdot structure and enhances the hydrogen evolution rate by approximately 5-fold over that of pure PFTBTA Pdots. The photophysics and the mechanism behind the catalytic activity of our design are investigated by transient absorption measurement, demonstrating the role of NCQDs to enhance the charge separation and the photocatalytic efficiency of the PFTBTA Pdot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.