Abstract

Organic transistor based circuits that can be employed for chemical vapor sensing, are described. Such circuits have improved sensing characteristics in comparison with discrete transistor based sensors. Complementary ring oscillator based sensors have a stronger response to analytes such as octanol and allyl propionate compared to a single transistor. A fabrication process that combines organic semiconductor circuitry with Si is described. The design and advantages of adaptive differential amplifiers with high gain and feedback are described. Voltage gains of ∼20 allow the detection of weak odorant inputs and the adaptive feedback allows for improved background elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.