Abstract

BackgroundDifferent mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions. However, the information about soil microbial diversity, community structure and ecosystem function in tea plantation under different mulching patterns was limited. In this study, we investigated bacterial and fungal communities of tea plantation soils under polyethylene film and peanut hull mulching using high-throughput 16S rRNA and ITS rDNA gene Illumina sequencing.ResultsThe results showed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the dominant fungal phyla were Ascomycota, Mortierellomycota and Basidiomycota in all samples, but different mulching patterns affected the distribution of microbial communities. At the phylum level, the relative abundance of Nitrospirae in peanut hull mulching soils (3.24%) was significantly higher than that in polyethylene film mulching soils (1.21%) in bacterial communities, and the relative abundances of Mortierellomycota and Basidiomycota in peanut hull mulching soils (33.72, 21.93%) was significantly higher than that in polyethylene film mulching soils (14.88, 6.53%) in fungal communities. Peanut hull mulching increased the diversity of fungal communities in 0–20 cm soils and the diversity of bacterial communities in 20–40 cm soils. At the microbial functional level, there was an enrichment of bacterial functional features, including amino acid transport and metabolism and energy production and conversion, and there was an enrichment of fungal functional features, including undefined saprotrophs, plant pathogens and soils aprotrophs.ConclusionsUnique distributions of bacterial and fungal communities were observed in soils under organic mulching. Thus, we believe that the organic mulching has a positive regulatory effect on the soil bacterial and fungal communities and ecosystem functions, and so, is more suitable for tea plantation.

Highlights

  • Different mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions

  • The Venn diagram showed that the numbers of Operational Taxonomic Units (OTU) in P1 and P2 were more than that in F1 and F2 (Fig. 1a-b), but in fungal communities, the numbers of OTUs were not significant differences in three treatments (Fig. 1c-d)

  • Our results showed that the relative abundance of Basidiomycota in soils under peanut hull mulching was significantly higher than that in soils under polyethylene-film mulching, indicating that peanut hull could provide anaerobic and high lignin content for the growth of Basidiomycota, and it could make Basidiomycota attend the conversion of lignin under anaerobic conditions (Fig. 4e)

Read more

Summary

Introduction

Different mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions. Inorganic mulching was widely used as a low-cost and water-saving measure in agriculture areas that were susceptible to drought. It could improve soil moisture, prevent soil nutrient loss and control crop pests and diseases [1, 2], it could change the soil biological characteristics and negatively impact on soil quality and sustainability, and even cause soil alkalization, resulting in injuries to plants [3]. The application of organic mulch on soils could inhibit weed germination, and increase soil fertility and provide mineral elements for plants [4,5,6] It could increase the biodiversity of soil microecosystem [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call