Abstract
We discuss some of the most relevant bonding scenarios for the adsorption of organic molecules on solid surfaces from the perspective of first-principles calculations. The adsorption of uracil and phenanthrenequinone on Si(001) and the adsorption of adenine on Cu(110) and graphite(0001) surfaces serve as prototypical examples to highlight relevant molecule–substrate interactions and their consequences for the properties of the adsystem. Covalent bonds formed during organic reactions with semiconductor surfaces significantly modify the structural and electronic properties of both the adsorbed molecules and the substrate. Organic molecule adsorption on metals may be driven by mutual polarisation that leads to substantial charge transfer and rehybridisation, despite small adsorption energies. Subtle effects related to the lowering of the kinetic energy of the valence electrons as well as dispersion forces, finally, govern the interaction between the organic molecules and chemically inert substrates such as graphite.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have