Abstract

In this paper, low-cost electrochemical processing and heat treatment were adopted to fabricate titanium alloy surfaces with switchable wettability. Meanwhile, surface structure, roughness, and oxide content were regulated by electrochemical processing voltage. The effects of surface structure, roughness, oxide content, temperature, and time of heat treatment on switchable wettability were investigated. In addition to suitable structural conditions, surface chemistry is also crucial to preparing metal surfaces with switchable wettability. The surface chemistry of electrochemical processed surfaces was changed by organic matter transfer during heat treatment. In a certain voltage range, suitable surface structure, high roughness, and surface oxide content by high voltage contribute to the organic matter transfer. In a certain range of heating temperature and time, the concentration difference of organic matter is the premise of organic matter transfer. Concurrently, the higher the temperature, the faster the speed of organic matter transfer. Different from other relevant studies, the hypothesis that the concentration difference promotes organic matter transfer is proposed and verified by interesting experiments. The difference concentration of organic matter between the environment and the samples, as well as between the two samples, was created to promote organic matter transfer. Therefore, the electrochemical processed surfaces with switchable wettability were obtained by organic matter transfer in two ways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call