Abstract
Soil aggregation and the translocation of clay and organic matter are significant pedogenic processes that manifest in diagnostic horizons in mature soil. Yet, their onset might date to much earlier stages of soil development where host rock weathering is dominant and litter from pioneer vegetation is the only input of organic matter. We present a time-lapse experimental-pedogenesis study on early host rock weathering that shows the formation of aggregates and clay translocation in response to irrigation with and without organic matter released from a litter layer. The presence of organic matter increases total carbonate dissolution capacity and results in a characteristic surface morphology, while simultaneously slowing down the dissolution rate. With the dissolution of carbonates, clay minerals of the host rock and iron from pyrite are released. Controlled by the presence of organic matter, both are either transported with the seepage water or form crusts and aggregates from clay minerals and freshly precipitated secondary iron oxides. Our study shows that the interplay of dissolution, neoformation of secondary minerals, translocation, and aggregation of organic matter and clay-sized minerals shape soil structure evolution during early pedogenesis in carbonate host rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.