Abstract
Climate and human activity are two important factors in regulating organic matter (OM) accumulation in the lake environment. However, when and how anthropogenic impacts have affected lacustrine OM accumulation in southwest China during the late Holocene have not yet been well defined. Here, a 16.3-kyr n-alkane record derived from Erhai Lake was used to trace OM sources and explore their connections to climate and human activity. The n-alkane distributions indicated that the dominant sediment sources shifted from terrestrial and aquatic plants to algae in the late Holocene. OM accumulation was closely related to catchment soil erosion, sediment transport, and deposition processes regulated by climate conditions before 5.0 cal. kyr B.P., following the patterns that stronger monsoon precipitation favoured more terrestrial and less aquatic OM input, and vice versa. From 5.0 to 2.0 cal. kyr B.P., the synchronous downwards trends in terrestrial OM input and precipitation intensity indicated that climate remained a major driving force for OM accumulation. However, sediment sources experienced large-magnitude and centennial-scale oscillations between allochthonous and autochthonous inputs, reflecting early human impacts appeared and lake ecosystems retained the self-regulated ability to recover from the basin-wide early moderate human disturbances. Afterwards, the increased (decreased) OM contributions from terrestrial (aquatic) plants contradicted the weakening monsoon precipitation since 2.0 cal. kyr B.P., indicating a dominant effect of human activities on OM accumulation. This change was accompanied by highly improved algae productivity and gradually elevated lacustrine trophic status, and the lake ecosystem eventually shifted into another state largely deviating from its climate-driven background due to intensified deforestation and agricultural cultivation. Regional comparison indicated that anthropogenic disturbances have temporal differences in southwest China. This study will further improve our understanding of past climate-human-environment interactions in southwest China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.