Abstract

Global efforts to build a net-zero economy and the irreplaceable roles of rare-earth elements (REEs) in low-carbon technologies urge the understanding of REE occurrence in natural deposits, discovery of alternative REE resources, and development of green extraction technologies. Advancement in these directions requires comprehensive knowledge on geochemical behaviors of REEs in the presence of naturally prevalent organic ligands, yet much remains unknown about organic ligand-mediated REE mobilization/fractionation and related mechanisms. Herein, we investigated REE mobilization from representative host minerals induced by three representative organic ligands: oxalate, citrate, and the siderophore desferrioxamine B (DFOB). Reaction pH conditions were selected to isolate the ligand-complexation effect versus proton dissolution. The presence of these organic ligands displayed varied impacts, with REE dissolution remarkably enhanced by citrate, mildly promoted by DFOB, and showing divergent effects in the presence of oxalate, depending on the mineral type and reaction pH. Thermodynamic modeling indicates the dominant presence of REE-ligand complexes under studied conditions and suggests ligand-promoted REE dissolution to be the dominant mechanism, consistent with experimental data. In addition, REE dissolution mediated by these ligands exhibited a distinct fractionation toward heavy REE (HREE) enrichment in the solution phase, which can be mainly attributed to the formation of thermodynamically predicted more stable HREE-ligand complexes. The combined thermodynamic modeling and experimental approach provides a framework for the systematic investigation of REE mobilization, distribution, and fractionation in the presence of organic ligands in natural systems and for the design of green extraction technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call