Abstract
Touch displays are ubiquitous in modern technologies. However, current protective methods for emerging flexible displays against static, scratches, bending, and smudge rely on multilayer materials that impede progress towards flexible, lightweight, and multifunctional designs. Developing a single coating layer integrating all these functions remains challenging yet highly anticipated. Herein, we introduce an organic–inorganic covalent–ionic hybrid network that leverages the reorganizing interaction between siloxanes (i.e., trifluoropropyl–funtionalized polyhedral oligomeric silsesquioxane and cyclotrisiloxane) and fluoride ions. This nanoscale organic–inorganic covalent–ionic hybridized crosslinked network, combined with a low surface energy trifluoropropyl group, offers a monolithic layer coating with excellent optical, antistatic, anti–smudge properties, flexibility, scratch resistance, and recyclability. Compared with existing protective materials, this all–in–one coating demonstrates comprehensive multifunctionality and closed–loop recyclability, making it ideal for future flexible displays and contributing to ecological sustainability in consumer electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.