Abstract

Traditional antifouling coatings are toxic to marine life, which makes developing new environmentally friendly marine antifouling coatings imperative. Antifouling coatings that are nonadhesive and antimicrobial may provide an effective approach to achieving this goal. In this study, an organic–inorganic composite coating consisting of fluorinated polyurethane (FPU) and carboxymethyl chitosan–zinc oxide (CMC–ZnO) was prepared to achieve antifouling. The coating took advantage of the complementary bioactive effects of the low surface energy of FPU and the antimicrobial properties of CMC–ZnO. The coating showed good antifouling performance, with a survival rate for Escherichia coli of 3.15% and that for Staphylococcus aureus of 3.97% and an anti-protein adsorption rate of more than 90%. This study provides a simple method for preparing antifouling coatings using nonpolluting raw materials with minimal adverse effects on marine environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.