Abstract

This review focuses on the innovative use of laser techniques in developing and functionalizing biomimetic surfaces, emphasizing their potential applications in the medical and biological fields. Drawing inspiration from the remarkable properties of various natural systems, such as the water-repellent lotus leaf, the adhesive gecko foot, the strong yet lightweight spider silk, and the unique optical structures of insect wings, we explore the potential for replicating these features through advanced laser surface modifications. Depending on the nature and architecture of the surface, particular techniques have been designed and developed. We present an in-depth analysis of various methodologies, including laser ablation/evaporation techniques, such as Pulsed Laser Deposition and Matrix-Assisted Pulsed Laser Evaporation, and approaches for laser surface structuring, including two-photon lithography, direct laser interference patterning, laser-induced periodic surface structures, direct laser writing, laser-induced forward transfer, and femtosecond laser ablation of metals in organic solvents. Additionally, specific applications are highlighted with the aim of synthesizing this knowledge and outlining future directions for research that further explore the intersection of laser techniques and biomimetic surfaces, paving the way for advancements in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.