Abstract

Bench-scale column studies were performed with four cap materials (sand, apatite, organoclay and granular activated carbon) for five target compounds (toluene, naphthalene, phenanthrene, pyrene and dichlorobiphenyl) to represent a range of cap materials and pollutants (volatile & semi-volatile compounds) commonly found in sediments. Two moment-derived methods were used to model cap performance. Rough agreement was observed between the column experiments and modeling data with the fronting and tailing effects identified from certain breakthrough curves indicating a high potential of non-linear adsorption. Distribution coefficients (kd) were experimentally determined with isotherm studies together with measurements of surface area and microporosity of the cap materials via nitrogen adsorption porisimetry. These studies unveiled the occurrence of nonlinear adsorption by Freundlich simulation. The effects of nonlinear adsorption of the cap were further explored via modeling. Results suggested better prediction of cap performance assuming nonlinear adsorption instead of linear adsorption results based upon the risk of release for a 30-year period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call