Abstract

As per the WHO reports, it has been estimated that almost 25% of food crops contain mycotoxins as the major contaminant. In this work, we developed a paper-based colorimetric lateral flow device (CLFD) impregnated with an organic cation receptor (OCR) for sensitive and selective detection of zearalenone (ZEN). Various techniques such as ultraviolet (UV)-visible absorption, cyclic voltammetry, and fluorescence spectroscopy were used for the detection of mycotoxins, and it was observed that OCR shows sensitivity and selectivity toward zearalenone (ZEN) only, irrespective of any other analytes. Furthermore, the colorimetric test revealed that the developed OCR shows a change in color with the addition of ZEN from greenish-gray to blue that is visible to the naked eye. The quantification of ZEN was also achieved using RGB analysis and compared with UV-visible spectroscopy data. Further, for the on-site detection of ZEN, a paper-based CLFD was also developed and used to evaluate the spiked corn sample containing ZEN, and it provided significant results with a limit of detection (LOD) of 0.31 nM (3σ method), good linearity (R2 = 0.9702), good reproducibility (SD = ±6%, triplicate), and good recovery of ZEN of 95-102% with a variation coefficient (VC) varying from 1.56 to 4.62%. Therefore, the device has the potential to check the mycotoxin toxicity in food products and is helpful in remote and developing areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.