Abstract
Boronate affinity chromatography (BAC) is argued to be a critical tool in specific capture and separation of cis-diol containing compounds. In present study, organic boronate affinity monolith poly(3-acrylamido phenylboronic acid-co-ethylene dimethacrylate) (AAPBA-co-EDMA) is prepared through one-step in situ polymerization procedure within a micropipette through the application of a pre-polymerization mixture which contains functional monomer (3-acrylamido phenylboronic acid), cross-linker (ethylene dimethacrylate), porogenic solvent (methanol with poly ethylene glycol) and initiator (2,2-dimethoxy-2-phenyl-acetophenone). Following the optimization of time exposure to UV lamp with 365 nm, the macroporous organic boronate monolith was selected. Several approaches including SEM and BET analysis, FT-IR spectroscopy and measuring contact angle were applied in the characterization of the morphology of the monolith. Several cis-diol compounds that include catechol and galactose are applied in the assessment of the boronate affinity of the organic monolithic material. Additionally, the capture of glucose from urine sample is also conducted. The basic principle of the approach is that boronic acid forms covalent bond with cis-diols in basic solutions whereas the ester bonds are dissociated under acidic media. By using the study results, monolith demonstrate good selectivity towards cis-diol containing compounds. Due to the hydrophilic property of monolith, the affinity chromatography monolith can be performed for several cis-diol compounds including glycoproteins and nucleosides. Also, fabrication of the organic boronate monolithic in microfluidic equipment is essential in facilitating the extraction of boronate affinity using small-volume samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.