Abstract

Experimental investigation into the mechanical response of red blood cells is presently impeded with the main impediments being the micro dimensions involved and ethical issues associated with in vivo testing. The widely employed alternative approach of computational modelling suffers from its own inherent limitations being reliant on precise constitutive and boundary information. Moreover, and somewhat critically, numerical computational models themselves are required to be validated by means of experimentation and hence suffer similar impediments. An alternative experimental approach is examined in this paper involving large-scale equivalent models manufactured principally from inorganic, and to lesser extent organic, materials. Although there presently exists no known method providing the means to investigate the mechanical response of red blood cells using scaled models simultaneously having different dimensions and materials, the present paper aims to develop a scaled framework based on the new finite-similitude theory that has appeared in the recent open literature. Computational models are employed to test the effectiveness of the proposed method, which in principle can provide experimental solution methods to a wide range of practical applications including the design of red-blood cell nanorobots and drug delivery systems. By means of experimentally validated numerical experiments under impact loading it is revealed that although exact prediction is not achieved good accuracy can nevertheless be obtained. Furthermore, it is demonstrated how the proposed approach for first time provides a means to relate models at different scales founded on different constitutive equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.