Abstract

This paper details the development of a mitochondria-based biofuel cell. We show that mitochondria can be immobilized at a carbon electrode surface and remain intact and viable. The electrode-bound mitochondria drive complete oxidation of pyruvate as shown by Carbon-13 NMR and serve as the anode of the biofuel cell where they convert the chemical energy in a biofuel (such as pyruvate) into electrical energy. These are the first organelle-based fuel cells. Researchers have previously used isolated enzymes and complete microbes for fuel cells, but this is the first evidence that organelles can support fuel cell-based energy conversion. These biofuel cells provide power densities of 0.203 ± 0.014 mW/cm 2, which is in between the latest immobilized enzyme-based biofuel cells and microbial biofuel cells, while providing the efficiency of microbial biofuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.