Abstract

Computer-Aided Detection/Diagnosis (CAD) through artificial Intelligence is emerging ara in Medical Image processing and health care to make the expert systems more and more intelligent. The aim of this paper is to analyze the performance of different feature extraction techniques for medical image classification problem. Efforts are made to classify Brain MRI and Knee MRI medical images. Gray Level Co-occurrence Matrix (GLCM) based texture features, DWT and DCT transform features and Invariant Moments are used to classify the data. Experimental results shown that the proposed system produced better results however the training data is less than testing data. Support Vector Machine classifier with linear kernel produced higher accuracy 100% when used with texture features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.