Abstract

We have studied cation ordering in dolomite in situ as a function of pressure, temperature, and experimental time using the multi-anvil apparatus and synchrotron radiation. Starting with ordered dolomite, we observe the onset of disordering taking place at 950°C, while complete disordering is achieved at 1,070 (±20)°C, for pressures ranging between 3.37 and 4.05 GPa. Pressure does not appear to have significant effect on the order/disorder transition over the investigated range. We find that dolomite can reach its equilibrium ordering state above 900°C within duration of laboratory experiment (few hours), both from disordered state and from ordered state. In addition, we have reversed the dolomite breakdown reaction [magnesite + aragonite = dolomite] between 4.5 and 5.5 GPa, by monitoring diffraction peak intensity. We also have determined that dolomite is stable up to 7.4 GPa at 1,100°C. We confirm some earlier studies where a change in slope (dP/dT) has been observed, but we find a non-zero slope in the low pressure range. Combining the values of entropy obtained from dolomite degree of ordering with enthalpy values deduced from our bracketing of [magnesite + aragonite = dolomite] equilibrium, we model the location of dolomite breakdown in the P–T space as a function of cation ordering. By comparing previous conflicting studies, we show that, although kinetics of order/disorder is fast, disequilibrium dolomite breakdown is possible. Our modeling shows that subducted disordered dolomite present in carbonated sediments could be decomposed to [magnesite + aragonite] at lower pressure (3.5 GPa) than usually considered (>5 GPa). This 2-GPa (60 km) difference is valid on a fast subduction path and is possible if disorder inherited from sedimentation is preserved. On a slow subduction path, however, dolomite breakdown is encountered at about 250 km depth, which is 100 km deeper than currently considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.