Abstract

The pressure–temperature conditions of the reactions of the double carbonates CaM(CO3)2, where M = Mg (dolomite), Fe (ankerite) and Mn (kutnohorite), to MCO3 plus CaCO3 (aragonite) have been investigated at 5–8 GPa, 600–1,100°C, using multi-anvil apparatus. The reaction dolomite = magnesite + aragonite is in good agreement with the results of Sato and Katsura (Earth Planet Sci 184:529–534, 2001), but in poor agreement with the results of Luth (Contrib Mineral Petrol 141:222–232, 2001). The dolomite is partially disordered at 620°C, and fully disordered at 1,100°C. All ankerite and kutnohorite samples, including the synthetic starting materials, are disordered. The P–T slopes of the three reactions increase in the order M = Mg, Fe, Mn. The shallower slope for the reaction involving magnesite is due partly to its having a higher compressibility than expected from unit-cell volume considerations. At low pressures there is a preference for partitioning into the double carbonate of Mg > Fe > Mn. At high pressures the partitioning preference is reversed. Using the measured reaction positions, the P–T conditions at which dolomite solid solutions will break down on increasing P and T in subduction zones can be estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.