Abstract

Low-dose computed tomography(CT) has an advantage to reduce X-rays that are harmful to the body. This paper considers the issue of reconstructing high-quality low-dose CT images from incomplete projection data. Generally, this can be done by statistical image reconstruction methods. However, the huge number of iterations of the statistical reconstruction algorithms leads to long computing time, making them difficult to be of practical value. To solve this problem, we propose a method to alleviate the issue by using total variation minimization and fast first-order method for the ordered subsets. We use Split Bregman alternating direction method to solve the optimization problem. Then, the projection onto convex sets method is used to speed up the convergence rate of the iterative method. Numerical experiments show that the relative reconstruction error of the proposed method can decrease faster than the first-order method of ordered subsets with the same iterative number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.