Abstract

Glyceric acid is one of the important intermediates of glycerol oxidation. However, it is extremely difficult to achieve high glyceric acid selectively as the reaction follows a complex pathway with the formation of a variety of undesired products. In this context, periodic mesoporous carbon-supported gold catalysts show promise for selective formation of the targeted product. Therefore, in this investigation, an effort has made to study the effect of particle size and shape of a series of carbon supported with varied sized/shaped gold catalysts on the liquid-phase oxidation of glycerol. Further, the role played by the surface of gold-nanoparticles has prompted us to investigate in detail the isotropic (nanocube/nanosphere) and anisotropic (nanoslabs/nanorods) gold supported onto both activated/amorphous carbon (Au/AC) and ordered mesoporous carbon (Au/CMK-3) towards glycerol oxidation. It was observed that the CMK-3 supported gold nanocube exhibited the highest yield towards glyceric acid with an excellent stability in terms of recyclability/reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call