Abstract

Transition metal oxides are widely employed as electrode materials in Li-ion batteries. During battery operation, Li ions are intercalated and extracted from the framework of the electrode structure, causing structural transitions. In some materials, the process can drive order-disorder transitions; however, insights into such processes are generally lacking, although they are essential for our understanding of battery aging and in the design of new sustainable battery chemistries. Herein, we investigate the intercalation-induced order-disorder transition in rutile VO2(M) electrodes by means of galvanostatic charge/discharge cycling, operando powder X-ray diffraction, and total X-ray scattering with pair distribution function analysis. The study reveals that the rutile structure transforms irreversibly into a highly disordered layered Li x VO2 structure, which is capable of reversibly intercalating Li ions. Our findings point out general trends for the intercalation-driven transitions in rutile oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.