Abstract

The main purpose of this paper is to exhibit the decisive role that order continuity plays in the structure of locally compact Boolean algebras as well as in that of atomic topological Boolean algebras. We prove that the following three conditions are equivalent for a topological Boolean algebra B: (1) B is compact; (2) B is locally compact, Boolean complete, order continuous; (3) B is Boolean complete, atomic and order continuous. Note that under the discrete topology any Boolean algebra is locally compact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.