Abstract
In classes of algebras such as lattices, groups, and rings, there are finite algebras which individually generate quasivarieties which are not finitely axiomatizable (see [2], [3], [8]). We show here that this kind of algebras also exist in Heyting algebras as well as in topological Boolean algebras. Moreover, we show that the lattice join of two finitely axiomatizable quasivarieties, each generated by a finite Heyting or topological Boolean algebra, respectively, need not be finitely axiomatizable. Finally, we solve problem 4 asked in Rautenberg [10].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.