Abstract

The principles and the algorithm of order classification of river watershed divides are outlined. It is shown that a formal application of any available order classification procedures for river watershed divides is not theoretically grounded as well as being impractical, because the physical mechanisms for formation of watershed divide network are different from those operating in the river network. We have formulated the basic principle of determining the watershed divides order on the basis of a serial sequence of sections constituting the travel path of an arbitrary water drop from the watershed divide to the outlet section of the basin. It is suggested that the order N should be assigned to the section of the watershed divide belonging to the full divide line of the N-order basin only if the travel path from it to the N-order stream is “full” in the topological sense, i.e. includes sections of all orders, from 1 to N. Also, we present a variant of determining the order on the basis of so-called higher-order triplets, incomplete sequences of sections of three neighboring orders along the travel path, with the higher of them determining the watershed divide order. The use of triplets is a subjective procedure of generalization that eliminates the influence of recent random erosional incisions on the forms of stable high-order watersheds. We outline the variants of the technique for identifying the network of watershed divides and calculating their orders, based on processing the digital elevation models (DEM) through the use of standard GIS ArcMap tools. Results are obtained in the form of a correlated classification of river and watershed networks which are rationally interpreted and hold promise for investigating the structure, functioning and evolution of river systems. The study revealed the existence of formation “cores” of river systems, i.e. regions within which the system reaches a higher stream order and which are bounded by watersheds of the same order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.