Abstract

The number of resident space objects (RSOs) has been steadily increasing over time, posing significant risks to the safe operation of on-orbit assets. The accurate prediction of potential collision events and implementation of effective and nonredundant avoidance maneuvers require the precise estimation of the orbit positions of objects of interest and propagation of their associated uncertainties. Previous research mainly focuses on striking a balance between accurate propagation and efficient computation. A recently proposed approach that integrates uncertainty propagation with different coordinate representations has the potential to achieve such a balance. This paper proposes combining the generalized equinoctial orbital elements (GEqOE) representation with an adaptive Gaussian mixture model (GMM) for uncertainty propagation. Specifically, we implement a reformulation for the orbital dynamics so that the underlying state and the moment feature of the GMM are propagated under the GEqOE coordinates. Starting from an initial Gaussian probability distribution function (PDF), the algorithm iteratively propagates the uncertainty distribution using a detection-splitting module. A differential entropy-based nonlinear detector and a splitting library are utilized to adjust the number of GMM components dynamically. Component splitting is triggered when a predefined threshold of differential entropy is violated, generating several GMM components. The final probability density function (PDF) is obtained by a weighted summation of the component distributions at the target time. Benefiting from the nonlinearity reduction caused by the GEqOE representation, the number of triggered events largely decreases, causing the necessary number of components to maintain uncertainty realism also to decrease, which enables the proposed approach to achieve good performance with much more efficiency. As demonstrated by the results of propagation in three scenarios with different degrees of complexity, compared with the Cartesian-based approach, the proposed approach achieves comparable accuracy to the Monte Carlo method while largely reducing the number of components generated during propagation. Our results confirm that a judicious choice of coordinate representation can significantly improve the performance of uncertainty propagation methods in terms of accuracy and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.