Abstract

The FERMO concept emerges as a powerful and innovative implement to investigate the role of molecular orbitals applied to the description of breakage and formation of chemical bonds. In this work, Hartree-Fock (HF) theory and density functional (DFT) calculations were performed for a series of four reactions of 1,3-dipolar cycloadditions and were analyzed by molecular orbital (MO) energies, charge transfer, and molecular dynamics (ADMP) techniques for direct dynamics using the DFT method. The regioselectivity for a series of four 1,3-dipolar cycloaddition reactions was studied here using global and local reactivity indexes. We observed that the HOMO energies are insufficient to describe the behavior of these reactions when there is the presence of heteroatoms. By using the frontier effective-for-reaction molecular orbital (FERMO) concept, the reactions that are driven by HOMO, and those that are not, can be better explained, independent of the calculation method used, because both HF and Kohn-Sham methodologies lead to the same FERMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.