Abstract

We use the high sensitivity to magnetic flux of mesoscopic conductance fluctuations in large quantum dots to investigate changes in the two-dimensional electron dispersion caused by an in-plane magnetic field. In particular, changes in effective mass and the breaking of momentum reversal symmetry in the electron dispersion are extracted quantitatively from correlations of conductance fluctuations. New theory is presented, and good agreement between theory and experiment is found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.