Abstract
China is currently focusing on the establishment of its BDS-3 system, and a BDS-3 constellation with 18 satellites in medium Earth orbit (MEO) and one satellite in geostationary Earth orbit (GEO) has been able to provide preliminary global services since the end of 2018. These BDS-3 satellites feature the inter-satellite link (ISL) and new high-quality onboard clocks. In this study, we present the analysis of BDS-3 orbits and clocks determined by Ka-band ISL measurements from 18 MEO satellites and one GEO satellite. The ISL data of 43 days from 1 January to 12 February 2019 are used. The BDS-3 ISL measurement is described by a dual one-way ranging model. After converting bidirectional observations to the same epoch, Ka-band clock-free and geometry-free observables are obtained by the addition and subtraction of dual one-way observations, respectively. One anchor station with Ka-band bidirectional observations is introduced into the orbit determination to provide the orientation constraints. Using Ka-band clock-free observables, BDS-3 satellite orbits are determined. The ISL hardware delays are estimated together with orbits, and the resulting hardware delay estimates are quite stable with STD of about 0.03 ns. The Ka-band orbits are evaluated by orbit overlap differences, comparison with L-band precise orbits, and satellite laser ranging validation. The results indicate that the radial orbit errors are on the 2–4 cm level for MEO satellites and 8–10 cm for the GEO satellite. In addition, we investigate the ground anchoring capability by adding one anchor station and reducing the amount of data of the anchor station. Using Ka-band geometry-free observables, BDS-3 satellite clocks are estimated and the RMS of post-fit ISL residuals is about 5 cm. The Ka-band clock offsets are analyzed and compared with L-band precise clocks. Independent of orbit errors, the Allan deviation of Ka-band clocks for averaging interval longer than 5000 s is superior to that of L-band clocks. Furthermore, a pronounced bump, which appears in the Allan deviation of L-band clocks, almost vanishes in Ka-band clocks. Finally, the periodic variations are detected for L-band and Ka-band clocks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have