Abstract
The regulation of angiogenesis is an interesting area to consider for novel therapeutic approaches to rheumatoid arthritis (RA). Chemically modified heparins have been developed as possible candidates for angiogenesis inhibitor; however, they have a major clinical drawback in exhibiting poor oral bioavailability. Here, orally absorbable O-desulfated low molecular weight heparin (ODS-LMWH) derivatives were newly synthesized by conjugating 2-O- or 6-O-desulfated LMWH with deoxycholic acid (DOCA) or bisDOCA (a dimer of DOCA), and their physicochemical properties, antiangiogenic potency and pharmacokinetic profiles were assessed. After selecting the best candidate among those derivatives, its therapeutic efficacy on arthritis was investigated in a murine collagen antibody-induced arthritis (CAIA) model. ODS-LMWH derivatives significantly inhibited the capillary-like tube formation of human umbilical vein endothelial cells (HUVECs) and basic fibroblast growth factor (bFGF)-induced angiogenesis in the Matrigel plug assay. Among all the compounds, 6ODS-LHbD showed the highest oral bioavailability in rats (19.3%). In the CAIA mouse model, 6ODS-LHbD (10mg/kg, p.o., S.I.D.) significantly inhibited neovascularization in the joint, the increase of hind-paw thickness, and the structural damage in the bone. Therefore, 6ODS-LHbD would be a promising candidate for an orally active drug for the treatment of RA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have