Abstract
BackgroundAdverse events and mortality tend to cluster around dialysis sessions, potentially due to the impact of the saw-toothed profile of uraemic toxins such as potassium, peaking pre-dialysis and rapidly dropping during dialysis. Acidosis could be contributing to this harm by exacerbating a rise in potassium. The objectives of this study were to investigate the effects of oral bicarbonate treatment on reducing inter-dialytic potassium gain as well as other clinical consequences of preserving muscle mass and function and reducing intradialytic arrhythmia risk in people on haemodialysis.MethodsOpen-label randomised controlled trial in a single-centre (London, UK). Forty-three clinically stable adults on haemodialysis were recruited, with a 6 month average pre-dialysis serum bicarbonate level < 22 mmol/l and potassium > 4 mmol/l. Thirty-three participants completed the study. Oral sodium bicarbonate tablets titrated up to a maximum of 3 g bd (6 g total) in intervention group for 12 weeks versus no treatment in the control group. Outcomes compared intervention versus non-intervention phases in the treated group and equivalent time points in the control group: pre- and post-dialysis serum potassium; nutritional assessments: muscle mass and handgrip strength and electrocardiograms (ECGs) pre and post dialysis.ResultsParticipants took an average of 3.7 ± 0.5 g sodium bicarbonate a day. In the intervention group, inter-dialytic potassium gain was reduced from 1.90 ± 0.60 to 1.69 ± 0.49 mmol/l (p = 0.032) and pre-dialysis potassium was reduced from 4.96 ± 0.62 to 4.79 ± 0.49 mmol/l without dietary change. Pre-dialysis bicarbonate increased from 18.15 ± 1.35 to 20.27 ± 1.88 mmol/l, however with an increase in blood pressure. Nutritionally, lean tissue mass was reduced in the controls suggesting less catabolism in the intervention group. There was no change in ECGs. Limitations are small sample size and unblinded study design lacking a placebo, with several participants failing to achieve the target of 22 mmol/l serum bicarbonate levels due mainly to tablet burden.ConclusionOral sodium bicarbonate reduced bicarbonate loss and potassium gain in the inter-dialytic period, and may also preserve lean tissue mass.Trial registrationThe study was registered prospectively on 06/08/2015 with EU Clinical Trials Register EudraCT number 2015-001439-20.
Highlights
Adverse events and mortality tend to cluster around dialysis sessions, potentially due to the impact of the saw-toothed profile of uraemic toxins such as potassium, peaking pre-dialysis and rapidly dropping during dialysis
Observational studies of clinical outcome support the view that acidosis is harmful, showing that, after adjustment for comorbidity, pre-dialysis bicarbonate levels below 22 mmol/L are associated with excess mortality [7, 8]
The aim of this study is to understand the clinical impact of oral sodium bicarbonate supplementation on pertinent dialysis-related trends: inter-dialytic potassium gain, muscle mass and function loss and the risk of arrhythmias in people on haemodialysis
Summary
Adverse events and mortality tend to cluster around dialysis sessions, potentially due to the impact of the saw-toothed profile of uraemic toxins such as potassium, peaking pre-dialysis and rapidly dropping during dialysis. Uraemic toxins closely fitting the saw-toothed profile include electrolytes, such as potassium, which is plausibly and statistically associated with peri-dialytic morbidity and mortality [3,4,5,6]. Acidosis is a likely contributor to peri-dialytic harms, for example by exacerbating the rise in plasma potassium levels [9], as well as having longer term adverse effects, such as increased muscle catabolism by impairing insulin and insulin-like growth factor-1 signalling which leads to muscle protein breakdown [10, 11]. No studies have investigated the relationship between acidosis and handgrip strength in people on HD
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have