Abstract

We investigated the feasibility of densely polyethylene glycol (PEG2000)-modified liposomes as mucus-penetrating particles (MPPs) for oral delivery of systemically absorbed peptides. The oral absorption of MPPs and mucoadhesive liposomes modified with glycol chitosan (GCS) was compared. In an in vitro artificial mucus model, the densely PEGylated liposomes showed mucus permeability. Intracellular uptake of liposomes was evaluated in a Caco-2 and mucus-secreting Caco-2/HT29 co-culture. Intracellular uptake of MPPs was unaffected by mucus in the co-culture system, whereas the cellular uptake of GCS-liposomes was lower with a mucus layer than in Caco-2 alone. Rat in vivo oral absorption of liposomes was evaluated by using fluorescein isothiocyanate dextran (FD) as a model peptide drug. Oral absorption was higher for densely PEGylated than for unmodified liposomes and was PEG-concentration dependent, but excessive PEGylation decreased FD blood concentration. PEGylated liposomes incorporating spermine (SPM) as an absorption enhancer were then designed and showed the highest in vivo absorption of FD of all tested formulations. The pharmacological effects of the oral liposomes were evaluated by using elcatonin and did not correlate with FD oral absorption. The non-PEGylated SPM liposomes showed the highest pharmacological effect, suggesting the need for drug-specific optimization of liposomal components and surface modifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.