Abstract

The oral cavity is a complex ecosystem in which several hundred microbial species normally cohabit harmoniously. However, under certain special conditions, the growth of some micro-organisms with a pathogenic potential is promoted, leading to infections such as dental caries, periodontal disease, and stomatitis. The physiology and pathogenic properties of micro-organisms are influenced by modifications in environmental conditions that lead to the synthesis of specific proteins known as the heat-shock proteins (HSPs). HSPs are families of highly conserved proteins whose main role is to allow micro-organisms to survive under stress conditions. HSPs act as molecular chaperones in the assembly and folding of proteins, and as proteases when damaged or toxic proteins have to be degraded. Several pathological functions have been associated with these proteins. Many HSPs of oral micro-organisms, particularly periodontopathogens, have been identified, and some of their properties-including location, cytotoxicity, and amino acid sequence homology with other HSPs-have been reported. Since these proteins are immunodominant antigens in many human pathogens, studies have recently focused on the potential contributions of HSPs to oral diseases. The cytotoxicity of some bacterial HSPs may contribute to tissue destruction, whereas the presence of common epitopes in host proteins and microbial HSPs may lead to autoimmune responses. Here, we review the current knowledge regarding HSPs produced by oral micro-organisms and discuss their possible contributions to the pathogenesis of oral infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.