Abstract
BackgroundTitanium dioxide (TiO2), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO2 on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO2 NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO2 NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice.ResultsThe ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO2 NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO2 NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO2 NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO2 NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC.ConclusionOral intake of TiO2 NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.