Abstract

BackgroundThe oral colon-targeting drug delivery vehicle is vital for the efficient application of curcumin (Cur) in ulcerative colitis (UC) treatment because of its lipophilicity and instability in the gastrointestinal tract.MethodsThe core–shell microparticle (MP) system composed of eco-friendly materials, zein and shellac, was fabricated using a coaxial electrospray technique. In this manner, Cur was loaded in the zein core, with shellac shell coating on it. The colon-targeting efficiency and accumulation capacity of shellac@Cur/zein MPs were evaluated using a fluorescence imaging test. The treatment effects of free Cur, Cur/zein MPs, and shellac@Cur/zein MPs in acute experimental colitis were compared.ResultsWith the process parameters optimized, shellac@Cur/zein MPs were facilely fabricated with a stable cone-jet mode, exhibiting standard spherical shape, uniform size distribution (2.84 ± 0.15 µm), and high encapsulation efficiency (95.97% ± 3.51%). Particularly, with the protection of shellac@zein MPs, Cur exhibited sustained drug release in the simulated gastrointestinal tract. Additionally, the in vivo fluorescence imaging test indicated that the cargo loaded in shellac@zein MPs improves the colon-targeting efficiency and accumulation capacity at the colonitis site. More importantly, compared with either free Cur or Cur/zein MPs, the continuous oral administration of shellac@Cur/zein MPs for a week could efficiently inhibit inflammation in acute experimental colitis.ConclusionThe shellac@Cur/zein MPs would act as an effective oral drug delivery system for UC management.

Highlights

  • Ulcerative colitis (UC) is a chronic, recurrent, and debilitating inflammatory disease which causes marked disturbance in colon inflammatory homeostasis and severe disruption in intestinal barrier function, affecting millions of people worldwide. it cannot be completely curedCurcumin (Cur) with a high oral administration safety is a natural bioactive polyphenol derived from the turmeric rhizome (Curcuma longa L.) [6], generally recognized as safe by the FDA

  • Oral colon-specific drug delivery systems (OCDDS) can deliver drugs directly to the colon and release them, which is a new type of targeted drug delivery system that It is used in the treatment of inflammatory bowel disease, colon cancer, and other diseases

  • The shellac@Cur/MPs were facilely fabricated with the core-shell structure, based on the coaxial electrospray technology, to enhance the oral delivery of Cur and its anti-ulcerative colitis (UC) efficacy

Read more

Summary

Introduction

Ulcerative colitis (UC) is a chronic, recurrent, and debilitating inflammatory disease which causes marked disturbance in colon inflammatory homeostasis and severe disruption in intestinal barrier function, affecting millions of people worldwide. it cannot be completely curedCurcumin (Cur) with a high oral administration safety is a natural bioactive polyphenol derived from the turmeric rhizome (Curcuma longa L.) [6], generally recognized as safe by the FDA. Cur as a multi-targeted and cost-effective agent has attracted much attention in UC prevention and treatment Despite these advantages, its further application for UC treatment has been severely restricted because of its strong hydrophobicity, high intestinal metabolic rate, instability in the gastrointestinal tract, and rapid excretion from the body [9]. Its further application for UC treatment has been severely restricted because of its strong hydrophobicity, high intestinal metabolic rate, instability in the gastrointestinal tract, and rapid excretion from the body [9] To circumvent these issues, multifarious oral drug delivery systems, including pellets, microparticles and nanoparticles, have been exploited to deliver Cur directly to the colitis tissues [10,11,12,13,14,15]. The oral colon-targeting drug delivery vehicle is vital for the efficient application of curcumin (Cur) in ulcerative colitis (UC) treatment because of its lipophilicity and instability in the gastrointestinal tract

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call