Abstract

Because tolerance to food is potentially modulated by IL-10, strategies to prevent food allergy should favor an increased delivery of IL-10 to the gut. We hypothesized that administration of a Lactococcus lactis transfected to secrete murine IL-10 could prevent sensitization in a mouse model of food allergy. Before each oral sensitization with beta-lactoglobulin in the presence of cholera toxin, young mice were administered the transfected Lactococcus lactis. Antigen-induced anaphylaxis after oral challenge assessed clinical protection achieved by the pretreatment. Serum and feces antigen-specific antibody concentrations were sequentially measured. Antibody titers were correlated with antibody and IL-10-secreting cell numbers in the spleen and in Peyer patches. Pretreatment with transfected Lactococcus lactis contributed to diminish anaphylaxis significantly, and inhibit antigen-specific serum IgE and IgG(1) production strongly. In addition, transfected Lactococcus lactis increased the production of antigen-specific IgA in the gut. Variations of antibody levels in the serum and the gut correlated with the numbers of antibody-producing cells. In addition, the presence of exogenous IL-10 in the gut by transfected Lactococcus lactis induced IL-10 secretion by Peyer patches cells. Increased IL-10 titers were also measured in the plasma. These results suggest that a microorganism bioengineered to deliver IL-10 in the gut can decrease food-induced anaphylaxis and provide an option to prevent IgE-type sensitization to common food allergens. Nonpathogenic IL-10-producing microorganisms in the gut could have a potential to prevent systemic food-induced anaphylaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.