Abstract

Applying the theory of compressive sensing in practice always takes different kinds of perturbations into consideration. In this paper, the recovery performance of greedy pursuits with replacement for sparse recovery is analyzed when both the measurement vector and the sensing matrix are contaminated with additive perturbations. Specifically, greedy pursuits with replacement include three algorithms, compressive sampling matching pursuit (CoSaMP), subspace pursuit (SP), and iterative hard thresholding (IHT), where the support estimation is evaluated and updated in each iteration. Based on restricted isometry property, a unified form of the error bounds of these recovery algorithms is derived under general perturbations for compressible signals. The results reveal that the recovery performance is stable against both perturbations. In addition, these bounds are compared with that of oracle recovery-least squares solution with the locations of some largest entries in magnitude known a priori. The comparison shows that the error bounds of these algorithms only differ in coefficients from the lower bound of oracle recovery for some certain signal and perturbations, as reveals that oracle-order recovery performance of greedy pursuits with replacement is guaranteed. Numerical simulations are performed to verify the conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.